Q-Plus Labs

Sitemap | Contact Us 

Dimensional Measurement Blog

Q-PLUS Labs' Case Study: California State University, Fullerton Baja SAE Team's Measurements for New Car Build

Posted by Mike Knicker on Feb 28, 2018 4:44:00 PM

 CSUF Baja Titan Racing2018.jpg

California State University, Fullerton's SAE (Society of Engineers) Baja is off to the races with a brand new car to dominate the rugged terrain of this year's International competition track in Oregon. Engineering students from CSUF are not only faced with the task of designing and building a "single-seat, all-terrain sporting vehicle that is to be a prototype for a reliable maintainable, ergonomic, and economic production vehicle that serves the recreational user market," but they must do so while also balancing their daily classes, and for some, their jobs as well. Given such a limited amount of time to build a winning vehicle, there is even less room to spend correcting any build errors. Therefore, quality must be built into each vehicle that the SAE Baja Team designs and manufactures, and Q-PLUS Labs provides them the measurement data they need to confidently drive to victory.

Introduction

CSUF Baja Titan Racing-3-2018.jpgEvery year, a new team assembles for this legacy project where current class seniors pass on their knowledge to upcoming juniors who will in turn pass that knowledge to their lower classmen. This through the process of raising funds to acquire the components to build the vehicle to "exposure with recruiters from leading companies in the mobility industry to help land their first engineering job after graduation." Each car starts from a design concept that has been modified over the past years of competition, however each new competition requires a new car to be built from the ground up. With each competition, the students face the time consuming and challenging process of designing the car, building the chassis, welding, and various test runs.

Our Process

CSUF Baja Titan Racing-2-2018.jpgThe team's model this year is named after the mascot of California State University, Fullerton – Tuffy the Titan. The overall design for chassis is consistent with the team's past models, however the significant change this year will be the design of the gearbox. Unlike the previous models, this year's model features a smaller gearbox which consequently decreases the length from the input to the output shaft. This will also push the firewall further back and allow more leg room for the driver, which is important when driving on challenging terrain during the competition's four hour endurance course. CSUF's Baja Team approached Q-PLUS Labs to obtain measurement data for their chassis design. Using a FARO arm, Q-PLUS Labs was able to articulate the probe between the areas of the chassis to collect data on the car's body. Accurate measurements will help enable CSUF to confidently move forward with manufacturing the components dependent on these measurements, ensuring that their time is focused on the success of the California State University, Fullerton's SAE Baja team in their race this on May 30th-June 2nd.

 
 
New Call-to-action

 

 
Read More

Topics: dimensional measurement, reverse engineering, case studies, Faro, Cal State Fullerton, Titan Racing

Q-PLUS Labs Case Study: GQ Moto Inc., 3D Scanning Takes Entrepreneurial Ideas from Designs to Finished Products

Posted by Mike Knicker on Jan 30, 2018 1:41:17 PM

 Q-PLUS Labs Case Study GQ Moto Inc., 3D Scanning Takes Entrepreneurial Ideas from Designs to Finished Products.jpg

Often times, necessity is the mother of invention. Many products are conceived out of necessity, while there are products which occur from what may seem like serendipity. With the prevalence and popularity of 3D printing among a variety of users, from elementary students to precision machine shops, the ability to develop products is becoming a more appealing and accessible process. But how does what starts as a design concept make it to the finish line as a final product? After all, an idea is only as good as its execution. Q-PLUS Labs uses 3D scanning to help with this process for the founder of GQ Moto Inc., who intends to show the story of an invention's journey, from idea to production.

Introduction

George Parstch, a pre-med student and business student turned inventor and patent holder is familiar with the dilemma of having an idea and figuring out how to execute on it. He's encountered this scenario quite a few times in his career – at least eight, to be exact. Most of these ideas came from his experience in a wide variety of fields from personal stylist and wardrobe consultant to medical device engineer. Parstch envisions bringing eight unique products to market while showing people how they can do it too through video documentary of his design's journey through development to delivery of the finished product.

Our Process

EDIT_IMG_1108_SMALL.jpg

Parstch approached Q-PLUS Labs seeking 3D scanning expertise for reverse engineering some of the prototypes he's developing. 3D scanning provides two main benefits for product development. One is reverse engineering which allows you to obtain the exact dimensions of an object so you can replicate it or in this case, improve upon it. The second benefit that 3D scanning provides for product development is dimensional inspection which aids in comparing the actual condition of a manufactured part or component to the nominal condition as defined by engineering drawings and blueprints, metal or film templates (decreasingly), digital files and 3D CAD models (increasingly), or even a master tool or part.

With a step by step documentary on how to bring new products from concept to completion, Partsch seeks to creatively innovate products used on a daily basis from menswear to children’s sports equipment. His background in medical device design, also has enabled him to develop a device that is more custom fit and functionally appealing to the user or consumer than what is currently available on the market. Q-PLUS Labs’ 3D scanning expertise enables companies like GQ Moto Inc. to get what they need for their design concept or refining their finished product. If you’d like more information about how we can use 3D scanning services as well as a wide variety of dimensional measurement services to help with your current idea or manufacturing process, click here to schedule an assessment.

 
 
New Call-to-action

 

 
Read More

Topics: dimensional inspection, reverse engineering, 3D scanners, 3D Scanning, 3D scanning equipment, case studies, 3d scanner, case study

Q-PLUS Labs' Case Study: California State University, Fullerton's Formula SAE Team's Race Car Engine 3D Scanning

Posted by Mike Knicker on Sep 9, 2016 1:20:03 PM

 CSUF_SAE2016_banner.jpg

California State University, Fullerton's Formula SAE chapter is back from their brief break to build another beast of a race car. Using Q-PLUS Labs' 3D scanning expertise to aid them, the team enters into their 3rd year in the challenging Formula SAE competition which encompasses designing, building, and competing a mini-formula style race car that will be evaluated for its potential as a production item.

Introduction

1_DSC_3074.jpgThis year, California State University, Fullerton's Formula SAE is using a Yamaha FZ-07 motorcycle engine which has increased displacement for their new race car design. The new design for the chassis will include a space frame as well as a carbon fiber driver cell. The space frame is created by welding steel tubes together and attaching them to the cockpit and the engine housing, as well as the drive train. Unlike the team's last design which was a stressed engine, this design will be mounted to the inside of the space frame. Weighing 20 to 30 pounds less than the team's original engine, this choice also offers more torque and faster acceleration without creating a heavier car which would give the team an edge against their competition.

Our Process

Because the final race car's design needs to be both fast and safe and relies on the integrity of the engine's measurements, Cal State Fullerton's SAE sought the expertise of Q-PLUS Labs' dimensional measurement engineers. Using the Steinbichler Comet 5, Q-PLUS Labs was able to provide CSUF's SAE team with accurate measurements of the engine to provide the structure for the race car's design. Using these points from the scan data, the team can proceed to confidently to create a CAD model of the car designed with both the driver's safety and structural integrity in mind. Follow CSUF's Formula SAE's journey and results here in our future blog post.

 
 
New Call-to-action

 

 
Read More

Topics: 3D scanners, 3D Scanning, 3D scanning equipment, case studies, Steinbichler, Cal State Fullerton, Baja SAE

Q-PLUS Labs' Case Study: Extreme Components, LP's Surface Finish Analysis of DAT Mold Interlocks

Posted by Mike Knicker on Aug 12, 2016 12:47:02 PM

 banner_extreme-components.jpg

Extreme Components, LP is known for designing and creating cost-saving, effective alignment/positioning devices for the Injection Mold Industry that are durable, reliable, and high precision. Their molding alignment locks are manufactured using dynamic alignment technology or DAT, which is a revolutionary method for self-aligning locks that involves minimal friction and wear, even at high speeds. Using Q-PLUS Labs’ nano measurement expertise, Extreme Components, LP wanted to use the surface finish analysis results to find out precisely how well their DAT locks held up against the wear of daily use versus the traditional friction-fit locks.

Introduction

Extreme Components, LP's unique product was designed using DAT which consists of rollers constrained in a cage, and moving in a prescribed manner due to the kinematic relationship between the rollers. The tongue is moved relative to the housing without direct mechanical contact between the tongue and the housing. Because there is very minimal friction between parts, the process decreases the amount of wear that would normally be experienced using methods such as those used with traditional friction-fit locks.

Our Process

Color_Map.jpgTo analyze the exact amount of wear, Q-PLUS Labs performed a surface roughness analysis to confirm the wear on the unused surface of a traditional friction-fit lock versus the wear experienced by Extreme Components LP’s DAT locks after multiple uses. This was accomplished using white light profilometry from CyberTechnologies’ CT 300. The subsequent data from the unused surface of a friction-fit lock revealed an average roughness of 10.6 micro inches. There was major deviation from the level surface while the actual tongue contact surface was too rough to measure using conventional high precision instruments due to galling, or wear caused by adhesion between sliding surfaces, which could be observed from visual inspection.

Color_Map_EC.jpgIn comparison to the friction-fit lock, Extreme Components’ DAT lock that had been used by a multinational medical device manufacturer for 4 years of near continuous service, cycling every seven seconds with a 2,300 pound load yielding more than 10 million cycles, was measured to have a surface roughness of only 5.7 micro inches. The data of the surface map displays better uniformity than the friction-fit lock, and visual inspection shows the DAT lock’s mirror-like surface and no galling.

Usually, this measurement was done using far less accurate and time consuming means. However, with the rapid and accurate surface finish analysis data Q-PLUS Lab’s provided, Extreme Components was not only able to effectively compare their DAT locks to traditional friction-fit locks, but visually show customers the value of how their product holds up in real use scenarios.

 
New Call-to-action

 

 
Read More

Topics: manufacturing, 3D scanners, 3D Scanning, 3D scanning equipment, case studies, nano measurement,, CT300, nano

Q-PLUS Labs' Case Study: California State University, Fullerton Baja SAE Team's Cutting Brake 3D Scanning

Posted by Mike Knicker on Apr 6, 2016 9:03:20 AM

 banner_CSUF_Cut_Break.jpg

California State University, Fullerton’s Titan Baja SAE (Society of Automotive Engineers) team is back at it again preparing for their 2016 competition season and sought Q-PLUS Labs' measurement expertise to 3D scan a crucial component of their new vehicle, dubbed the Hyperion, the second iteration of the team’s 2015 race car, the Cronos which Q-PLUS Labs aided with 3D scanning last year. Their 2015 design of the Cronos not only competed, but beat out half the competition! This year, the team is dialing in on a design that works best for the most random and unpredictable off-road terrain which the race has been known to throw at competitors.

Introduction

Front_View.pngA little background on the rigorous Baja SAE race—it originated in 1976 at the University of South Carolina as a comprehensive engineering competition with the objective for students to function as a team and not only design, build, test, promote, and race a vehicle, but also raise financial support while balancing the demands of their course work. In order to compete as formidable opponent at the 2016 Baja SAE race, the final single-seat, all-terrain sporting vehicle is comprised of parts machined by CSUF’s Baja team.

This year, the team decided to integrate a cutting brake into the vehicle’s design. Because the race course terrain consists of extreme conditions, installing a cutting brake would help mitigate the unpredictable conditions and make the vehicle more maneuverable. It accomplishes this by working in line with the rear brake system to isolate specific wheels, giving the driver greater control of the car and facilitating with sharp terms.

Our Process

The cutting brake’s measurements are extremely vital to the vehiOurProcess.jpgcle’s ability to successfully navigate the race due to the challenging track. CSUF’s Baja team requested Q-PLUS Labs to 3D scan the cutting brake that provided the team with measurement data from which they can derive the best fit area of the car to mount the brake. Using the Steinbichler Comet 5, Q-PLUS Labs was able to give the team precise measurement data for the cutting brake, allowing a new model to be water jetted accurately while reducing the amount of time it would have taken the team to acquire the measurements manually, and helping them quickly prepare for their 2016 race in Gorman, California May 19th-22nd.

 
 
New Call-to-action

 

 
Read More

Topics: 3D scanners, 3D Scanning, 3D scanning equipment, case studies, Steinbichler, Cal State Fullerton, Baja SAE

Q-PLUS Labs 3D Scans & Renders Santa Statue

Posted by Mike Knicker on Dec 22, 2015 9:25:44 AM

ChristmasBlog2.jpg

Always looking for an interesting way to convey our holiday greeting, Q-PLUS Labs took on a unique approach to sharing holiday cheer with customers with a 3D scan of a Santa statue.

Our Process

To scan Santa, our engineers used the FARO Edge ScanArm HD which rapidly delivers point clouds with extreme resolution and high accuracy, even across different textures, including highly reflective surfaces. The scan data was then sent to Geomagic Design X, a poweful point cloud processing software for post processing, where it was quickly formed into a mesh and exported as a standard STL file.

SantaClaus_RenderPlay.jpgThe 3D file produced was a one layer, watertight mesh which was then separated into color regions. These color regions allow the mesh to be easily cut into multiple layers which were then imported into SpaceClaim to assign each individual layer its own color in context of the original Santa statue.

To render a 3D photorealistic version of the file, these colored layers into Keyshot, a program that has the ability to process and render the file in actual time. This software creates incredible visuals with 3D data and was able to produce the animations of the final rendered Santa.

PlayScreen.jpg

New Call-to-action

 

 
Read More

Topics: 3D scanners, 3D Scanning, 3D scanning equipment, case studies, Faro, holidays, keyshot, spaceclaim

Q-PLUS Labs' Case Study: California State University, Fullerton Baja SAE Team's Brake Caliper 3D Scanning

Posted by Mike Knicker on Nov 11, 2015 11:30:00 AM

 CSUF_Baja_Banner.jpg

California State University, Fullerton’s Titan Baja SAE (Society of Automotive Engineers) team sought Q-PLUS Labs’ measurement expertise to assist in jump starting the team’s 2015 season since their 2008 competition hiatus. Originating in 1976 at the University of South Carolina, the objective of this comprehensive engineering competition is for students to function as a team to not only design, build, test, promote, and race a vehicle, but also raise financial support while balancing the demands of their course work. To produce a formidable competitor at the 2015 Baja SAE race, the final single-seat, all-terrain sporting vehicle comprised of parts machined by CSUF’s Baja team from scrap, over the course of 9 months.

Introduction

2car.jpgBefore building their vehicle, CSUF's Baja team designed a virtual rendering of it in Solidworks, a 3D CAD design software. Because each piece of the car was hand machined, the team needed accurate measurements of the car’s calipers before proceeding with the build. Calipers are essential to the vehicle’s ability to stop and are one of the critical components of a car’s breaks. The challenging track consisted of rough terrain, making the measurements extremely vital to vehicle’s ability to successfully navigate the race.

Our Process

Due to its complex geometry, the calipers posed a challenge for the team to model quickly. Using Q-PLUS Labs’ 3D scanning services, the team was able to “test fit” the calipers on the solid model before it was even made. Using the FARO Edge calipers_small.jpgScanArm HD, a 3D laser scanner which rapidly collects high accuracy point cloud data, Q-PLUS Labs was able to provide the team the measurement data they needed despite the reflective surface of the calipers. The scanning information that Q-PLUS Labs provided the team reduced the amount of time it would have taken them to machine the vehicle’s parts to fit the calipers.

Defying the odds of the Baja SAE race where cars were breaking down along the grueling track, CSUF’s Titan Baja team finished the race with 11 laps. Forging ahead and looking to be in the top 20 finishing teams, they are not wasting any time preparing for 2016’s race in Gorman, California on May 19th-22nd.

 
 
New Call-to-action

 

 
Read More

Topics: 3D scanners, 3D Scanning, 3D scanning equipment, case studies, Faro, ScanArm HD, Cal State Fullerton

Q-PLUS Labs' Case Study: 3D Scanning of University of California, San Diego Statues

Posted by Mike Knicker on Sep 15, 2015 1:00:00 PM

 UCSD_Banner

The University of California, San Diego requested Q-PLUS Labs for a unique onsite 3D scanning project of the Something Pacific installation for the Stuart Collection. This installation by Nam June Paik consists of two parts, an indoor exhibit found in the lobby of the university's Media Center as well as 3 statues of tiny Buddhas staring at dead TV sets embedded throughout the landscape UCSD's Communications/Media Center building. The resulting scans will be used to reproduce the Buddha statues in detail should they be damaged or stolen.

Introduction

UCSD Statue ScanNam June Paik designed this installation which is composed of televisions paired with Buddhas watching them to depict extended contemplation. As an integral aspect of UCSD's landscape, the university sought to preserve the statues via 3D scan data in case the statues would need to be recreated in detail. For this particular application, Q-PLUS Labs' engineers used white light and laser scanning technology, specifically the Steinbichler COMET L3D and the Faro Edge ScanArm HD.

Our Process

UCSD Statue Scan

Even with high tech 3D scanning equipment, obtaining accurate and detailed scans in an outdoor and uncontrolled environment was a meticulous process. Because the statues were unmovable and anchored into the ground, the engineers established a controlled scan environment by carefully tenting each statue to block excessive lighting.

Being in an outdoor environment, the statues required thorough and careful cleaning as well as a trench dug around each statue to render more of the statues' surface area for greater scan detail. The freeform and unusual geometry of each statue also provided a challenge to obtain scan details. However, Q-PLUS Labs' engineers completed the job and the scan data produced will help to preserve this interesting exhibit for years to come.

Something Pacific       1986 Nam June Paik       Stuart Collection       UC San Diego       Photo by: Philipp Scholz Rittermann
New Call-to-action

 

Read More

Topics: 3D scanners, 3D Scanning, 3D scanning equipment, case studies, Faro, UC San Diego, Steinbichler, Comet L3D, ScanArm HD

Q-PLUS Labs' Case Study: 3D Scanning of USS Freedom

Posted by Mike Knicker on Jul 28, 2015 2:42:00 PM

Q-PLUS Labs Case Study: USS Freedom

Lockheed Martin required Q-PLUS Labs' measurement expertise to generate quick results via 3D scan data of the rear doors of the USS Freedom in San Diego, California. As a new breed of warship, the littoral combat ship (LCS) was designed to be a fast and formidable surface combatant with warfighting capabilities such as mine clearing, anti-submarine and anti-surface warfare.

Introduction

USS FreedomAt 378 feet in length and composed of a high speed, semi-planing steel monohull with an aluminum superstructure, the USS Freedom is a unique ship. It is the first-in-class littoral combat ship of its kind and is able to operate in a variety of environments and assignments from dangerous shallow water and near shore missions to minesweeping and humanitarian relief.

Our Process

USS Freedom Scanning

Q-PLUS Labs went onsite with portable measurement equipment, using a range scanner to collect massive amounts of data in a highly time sensitive assignment, then post process it into the needed readings and analyses. Collecting data with the Faro Photon range scanner, which is capable of measuring roughly the length of a football field in every direction, Q-PLUS Labs' engineers were able to overcome the scanning obstacles involved with measuring onboard a currently active warship. One of the challenges in the scanning process was collecting scan data of exterior doors which involved attaching a harness an engineer as he maneuvered the equipment overboard.

engineIn order to quickly move the USS Freedom out of port, Q-PLUS Labs was required to acquire the data rapidly and accurately, delivering results which would be used to improve the design of the ship's rear doors. These doors are located near waterline level to allow safe launch and recovery of watercrafts while the ship is in motion. The accuracy of the doors' measurements would allow for improved design to resolve the problems being caused by the shape and position of the currently installed doors.  

Case Study Update (11/19/15): Q-PLUS Labs is completing a very special and unique 3D scanning project on the USS Freedom's sister ship, the USS Independence! Look for the upcoming case study.

New Call-to-action

 

Read More

Topics: 3D scanners, 3D Scanning, 3D scanning equipment, case studies, Faro, Photon Scanner,, Ship, USS Freedom

Three Types of 3D Scanning Methods for Non-Contact Nano Measurement

Posted by Mike Knicker on Feb 18, 2015 2:50:00 PM

Three Types of 3D Scanning Methods for Non-Contact Nano Measurement

Dimensional inspection includes many types of scanning devices for a broad range of applications. In the realm of 3D Scanning, the level of detail that can be captured makes it the method of choice, especially for measuring very small objects requiring non-contact measurement methods.

Whereas contact 3D scanners collect measurement data by physically scanning the object with a device that comes into contact with every point on the surface, non-contact 3D Scanners collect immense amounts of data quickly without altering the geometry of the object. This is also an advantage for collecting measurements on the nano scale.

3 Types of Non-Contact 3D Scanning Methods

Laser-Scanning Confocal Microscopes
A confocal microscope uses a process called optical sectioning to collect images from various depths. These images can be reconstructed with a computer to create a 3D model of complex small objects. Unlike other laser systems, a confocal microscope only sees one depth level at a time, which allows it to generate a highly controlled depth of focus for very small objects with tight tolerances.

White Light Interferometry
This non-contact measurement system allows you to obtain surface measurements at the nanometer level. The technology behind white light interferometry uses wave superposition to measure distances based on data collected about reflected wave interactions. Interferometers can also be combined with microscopes to measure very small objects. Because they rely on the detection of waves and not optical images, interferometers are also useful for measuring objects with reflective surfaces.

Chromatic Confocal
Like interferometry, chromatic confocal also uses white light to collect measurement data. However, whereas interferometry uses the superposition of waves after they are reflected off the object, chromatic confocal measures the wavelength as it hits the surface of the object. This method produces more reliable results when measuring surface roughness or step-height depth, due to the minimum mathematical calculation required. The tolerances of large objects may allow the use of a thin whitening spray to facilitate scanning but the geometry of very small objects could be potentially buried by it. Fortunately, all of these methods work well with various types of surfaces from reflective to absorbent.

If you require any of these types of 3D Scanning methods, or if you're not sure what you need, the experts at Q-PLUS Labs are here to help. We'll work closely with you through every step of the process to ensure that you get the best results for your application. Contact us anytime if you have questions, or if you're ready to get started, call us today.

 

dimensional measurement assessment

 

Read More

Topics: dimensional measurement, 3D scanners, 3D Scanning, CMMs, articulating arms, 3D scanning equipment, case studies, engine, Faro Arm, Faro, SAE, race car, Fullerton SAE