Q-Plus Labs

Sitemap | Contact Us 

Dimensional Measurement Blog

Outsourcing Reverse Engineering? Answer These 7 Questions

Posted by Mike Knicker on Jul 19, 2013 5:59:00 AM

reverse engineering 3D fan

If you have decided that outsourcing reverse engineering services makes the most sense for your project or business, you still have some decisions to make. Not all reverse engineering applications are the same. You must decide what type of equipment to use and what kind of output you need, as well as consider a range of other factors.

This checklist is designed to help you get started.

7 Questions to Ask When Outsourcing Reverse Engineering

  1. What is the objective of reverse engineering? Your provider will need to know your end goals in order to help you make the most cost-effective decisions.

  2. What type of reverse engineering makes the most sense for your application? You can decide between design intent, verbatim (as-built), or a hybrid of the two. When reverse engineering for design intent, the measurements of the original object may be adjusted to correct for imperfections so that the final product will function in the desired way. The verbatim approach aims to create an exact replica of the original object, including imperfections, and the hybrid approach can be used in cases when the original object features multiple types of surfaces.

  3. How should you process measurement data? When gathering measurements to reverse engineer an object, you can use a dimension-driven approach, shrink-wrap surfaces, or a combination of the two.

  4. How accurate do you need to be? Depending on your objectives and the reasons for reverse engineering, your application might need a certain degree of measurement accuracy. For example, in the case of an object that must meet regulatory specifications, accuracy is extremely important. However, if you are replicating a statue for sale in a gift shop, some minor differences are acceptable. 

  5. Does the original object need to remain intact? In some cases, in order to get the most accurate measurements, the original object will need to be disassembled or even destroyed. If this is not an option for your application, your provider must know that at the beginning of the process.

  6. What type of equipment should you use? Many different types of measurement equipment can be used for reverse engineering. Your provider will consider the level of accuracy required, surface characteristics of the original object, and many other factors when deciding how best to take measurements.

  7. Do you need to measure the object in a constrained state? For some applications, measuring the object while in a state that simulates how it's shape will conform in assembly makes more sense. You might also need to measure other objects or parts if you are reverse engineering an item that is part of an assembly.

Your provider can (and should) help you answer many of these questions, so don't be afraid to ask.

One of the greatest advantages of outsourcing reverse engineering services to providers such as Q-PLUS Labs is that we operate across multiple industries. This means that we offer a broad range of equipment types and the expertise to handle almost any reverse engineering application. Contact us today to learn more or to get started on your next reverse engineering project.

 

Read More

Topics: dimensional inspection, measurements, dimensional measurement, criteria, reverse engineering, 3D Scanning, 3D scanners, metrology, outsourcing

Four Reasons Why Engineers Benefit from Learning More About Metrology

Posted by Mike Knicker on Jun 11, 2013 12:55:00 PM

learning metrologyIn order to obtain an engineering degree, you must learn certain concepts and skills in school. However, developing an engineering career means your education continues on the job. One field not typically taught extensively in engineering school is metrology, but for any engineer entering the field of manufacturing, understanding metrology is essential. 

In the simplest terms, metrology is the science of measurement. In practical terms, when it comes to manufacturing, engineers have a vested interest in knowing the fundamentals of geometric dimensioning and tolerancing, commonly referred to as GD&T. Engineering drawings and 3D CAD models use GD&T to communicate engineering dimensions and tolerances to manufacturing and quality staff. If the engineer doesn't know how to effectively communicate in the language of GD&T, the finished product will likely not meet the desired outcome.

Why Understanding Metrology Is Important

The purpose of engineering design is to convey information in a way that makes it as easy as possible for the manufacturing team to create the desired parts and assemblies. A good engineering drawing will consider:
  • The design intent
  • The people and processes involved in manufacturing
  • The inspection and verification process

The consequences of not understanding the fundamentals of GD&T can be dire:

  • Disruption of manufacturing schedules
  • Damaged reputations because of the inability to fulfill requirements
  • Inability to meet budgets

Because metrology is so important in the manufacturing industry, there are several benefits for young engineers to learn it sooner rather than later:

  1. Quality - Good engineering drawings result in parts that match the design intent.

  2. Budget - Getting a drawing right the first time saves money.

  3. Time - When dimensions and tolerances are stated clearly and thoroughly, manufacturers do not need to take the time to ask questions or get clarification.

  4. Customer satisfaction - Producing the correct results in a timely manner keeps customers happy.

So how does a engineer learn more about GD&T if it's not commonly part of the standard curriculum? The American Society of Mechanical Engineers (ASME) offers the Y14.5 - 2009 Dimensioning and Tolerancing specification. This set of guidelines describes the language of GD&T and establishes uniform practices for communicating the requirements on engineering drawings. Additional resources include training programs and traveling seminars.

Q-PLUS Labs offers both training and consulting services to help ensure that your manufacturing process goes as smoothly as possible. Our training programs are designed for small groups across multiple disciplines so that engineers, manufacturing staff, and other key players can learn how to most effectively communicate in the language of GD&T. Contact us today to learn more about how we can help you.

Are you an engineer in the field of manufacturing? Tell us in the comments section how you learned about GD&T.

 

Read More

Topics: dimensional inspection, dimensional measurement, reverse engineering, metrology

11 Dimensional Inspection Equipment Factors to Consider Before Purchasing

Posted by Mike Knicker on May 7, 2013 2:30:00 PM

11 dimensional inspection factorsPurchasing dimensional inspection equipment requires making a big decision, and in most cases a significant financial investment. It is important to be certain that the equipment you buy will serve its intended purpose and provide the results you need.

Because there are so many different types of equipment that can be used for a broad range of purposes, it helps to know what questions to ask before you buy.

11 Dimensional Inspection Equipment Questions You Need to Ask

  1. What sensor type do you need?

    Depending on the surface characteristics of the objects you intend to measure, you may need either a contact sensor or a non-contact sensor. Within each of these two categories are several other options and different sensor types. The more you know about the objects you will be measuring, the better able you will be to select the right types of dimensional inspection equipment.

  2. What tolerance levels are required for your application?

    There is a big difference between replicating an antique to sell in a gift shop and mass producing components that will be used in a medical device. In the former case, a certain amount of inaccuracy is tolerable, while in the latter case the requirements are more stringent. Make sure you know how precise you need to be, especially if you have to maintain regulatory compliance.

  3. Does your equipment need to be portable?

    Do you need a machine that will always sit at the end of a production line, or do you need a more portable unit that can take measurements in the field?

  4. What size(s) are the objects you need to measure?

    Some objects are small enough to be put into a machine, while others are simply too large or heavy. On the other hand, objects that are on the nano scale will require specialized equipment.

  5. What shape(s) are the objects you need to measure?

    Does your object have internal geometry that you need to measure? Bore holes, threads, and other complex geometry cannot always be measured by certain types of dimensional inspection equipment or without certain accessories.

  6. How fast do you need results?

    Measuring the occasional prototype is a different scenario than inspecting every component that comes off a production line. It is important to know how quickly you will need results so you can purchase a machine that is capable of meeting your needs.

  7. Does your equipment need to be automated?

    Some dimensional inspection equipment can be automated, but not all of it can be. If this is an important factor for your application, make sure it is a high priority in your purchasing decision.

  8. Who will be using the equipment?

    Ease of use should be considered if you are weighing multiple options. Will you need to hire new staff or train employees to use this new equipment? Does your budget support that?

  9. What is required to maintain the equipment?

    High-precision measurement equipment needs to be properly set up, regularly maintained, and periodically calibrated. Does your staff have the skills to do this, or can you outsource it?

  10. How durable and reliable is the equipment?

    Dimensional inspection equipment is an investment. It is important to compare multiple manufacturers and work with an expert who has experience will all of them.

  11. What is your budget?

    Perhaps one of the most important factors is your budget, however, be sure to weigh all of the above before you make a decision.

If you would like to learn more about selecting the right dimensional inspection equipment for your application, download our free guide. You can also schedule a consultation with one of our dimensional inspection experts who can walk you through the entire process. Contact us today to schedule an assessment.

What type of dimensional inspection equipment are you looking for?

Read More

Topics: dimensional inspection, manufacturing, measurements, dimensional measurement, equipment, criteria, dimensional inspection equipment, metrology, budgeting, project planning

10 Types of Dimensional Inspection Hand Tools and When to Use Them

Posted by Mike Knicker on Apr 30, 2013 5:55:00 AM

dimensional inspection hand toolsThe simplest solution is often the best. This old adage applies to almost anything, including dimensional inspection. In a room full of high-tech equipment like 3D scanners, coordinating measuring machines, and high-precision devices that can measure on a nano scale, sometimes the only thing really you need is a pair of calipers.

Dimensional inspection
hand tools are sometimes the best answer when you need to take measurements. They are both portable and precise, are generally cost-effective, and they can be used for a broad range of applications.

10 Types of Dimensional Inspection Hand Tools 

  1. Calipers - There are several different types of calipers designed to measure length, depth, internal, and external dimensions. Calipers can also be used to transfer dimensions from one object to another.
  2. Bore gages - Take an internal diameter measurement or compare to a pre-determined standard.
  3. Fixed gages - Used only to compare an object to a standard, fixed gages can measure attributes such as angle, length, radius, bore size, thickness, and other parameters.
  4. Micrometers - These dimensional inspection hand tools can use mechanical, digital, laser, dial, or scale technology to precisely measure length, depth, thickness, diameter, height, roundness, or bore.
  5. Protractors - Measure angles with a variable protractor or compare the angle of an object to a standard with an angle gage.
  6. Indicators and comparators - The precision movement of a spindle or probe is amplified so the results can be displayed digitally or on a dial or column.
  7. Air metrology instruments - Thickness, depth, diameter, roundness, taper, and bore can be measured by calculating changes in pressure or air flow.
  8. Ring gages - Typically used as a pass/fail test, ring gages can be threaded, smooth, or tapered to test the size of pins, threaded studs, and shafts.
  9. Length gages - Electronic or mechanical, these devices are used to measure or compare the length of an object.
  10. Thread gages - The spacing, shape, size, and geometry of a thread can be verified or measured with a thread gage.

Although dimensional inspection hand tools are frequently a simple and elegant solution, they still must be treated with the same care as a machine that uses more advanced technology. Some devices must be calibrated or regularly cleaned to ensure that they provide consistent, accurate results. It is also important that the operator is appropriately trained to prevent human error.

Whether you have a simple measuring problem or a complex quality control requirement, come to Q-PLUS Labs for all of your dimensional inspection needs. We'll help you select the right equipment and either train your staff to use it or perform the measurements in-house. Want to learn more about selecting the right dimensional inspection equipment for your application? Download our free e-book today.

Which dimensional inspection hand tools have you used?

 

Read More

Topics: dimensional inspection, 3D Scanning, hand tools, 3D scanners, metrology